
MODEL OF A FRACTURE 

ELASTIC VIBRATIONS 

L. A. Maslov 

AS AN E M I T T E R  OF 

UDC 534.121.1:539.382.4 

During the pas t  two decades a new method has begun to be intensively developed for  the inves-  
t igation of f r ac tu re  p r o c e s s e s  which is based  on recording  the mechanical  vibrat ions generated 
by the defects of a medium [1]. The new method ' s  p rob lems  include: extract ion of a useful s ig-  
nal f rom the extraneous noises ,  identification of the type of defect, determination of its cha rac -  
t e r i s t i c  dimensions,  and an  es t imate  of the danger  of the situation which has developed. The 
solution of the p rob lems  indicated has grea t  meaning in such p rac t i ca l  applications as nonde- 
s t ruct ive  quality control  and the engineering diagnostics of ma te r i a l s  and manufactured goods. 
Therefore ,  the investigation of the spec t rum of the signals produced by the formation of m a c r o -  
scopic f rac tu res ,  such as the te rmina l  and, consequently,  mos t  dangerous phase of  f racture ,  is 
of grea t  interest .  The kinematical  cha rac t e r i s t i c s  of a f rac tu re  as an emi t te r  of elast ic  v ib ra -  
t ions a r e  formulated  in this paper .  The spatial and t ime spect ra  of the dynamical  motions 
caused by the appearance  of a growing f rac tu re  in a thin plate are  discussed. Relationships 
a re  der ived between the spect ra l  cha rac t e r i s t i c s  of propagating dis turbances  and the p a r a m e -  
t e r s  of the f rac ture .  

w Let us a s sume  that a two-dimensional  s t r e s s  s tate  is real ized,  the mate r ia l  is isotropic,  it is 
e las t ic  r ight up to f rac ture ,  and the b reak  is normal+ The wave equations 

t 0 ~  a ~  , ~%-. ! 02~ 0~2 .~a2~ 
c--~"a-~- - -  Oa:--~ q- O-~s-"' c~ ~ - -  ~ -I- ~ (1.1) 

with the initial and boundary conditions 
u = v = d u / d t  = d v / d t  = 0, t = 0; (1.2) 

u = 0 when lyl /// l, x = 0; (1.3) 

(~x = q whenly I ~ l, x = 0, (1.4) 

occur  in the medium,  where  u and v a re  the displacements  along x and y, 21 is the f rac ture  length, t is 
the t ime,  go and $ a re  the longitudinal and t r a n s v e r s e  potentials ,  and c~ and c 2 a re  the i r  propagation ra tes  
(the potentials  go and ~, the s t r e s ses ,  and the displacements  a re  re la ted  by well-known functions [2]). The 
quantity q in the conditions (1.3) is the load (constant) acting on the f r a c t u r e ' s  edges in the direction of the 
x axis. In this case  the pr inciple  of superposi t ion of the s t r e s s - s t r a i n  state is applied, which is justified by 
the l inear  s ta tement  of the problem.  Thus, the problem of the propagation of "unloading" waves is replaced 
by the p rob lem of the propagat ion of " loading"  waves (the m i r r o r - s y m m e t r i c  problem).  However, the physi -  
cal in terpreta t ion of the resul ts  obtained in the cited approach [the problem (1.1)-(1.3)] is ra ther  complex. 
Another  method of descr ibing a developing defect is poss ib le  - the specification of its kinematical  cha rac t e r -  
is t ics .  One can wr i te  the boundary conditions (1.3) in such a case  in the form 

u = 0 whenlYl ~ l, x = O; (1.4) 

u = U owhen  lYl < l, x = O; 
'vxlj = 0 when  lYl ~ ~ ,  x = O, (1.5) 

where  u 0 is the kinematical  source  function. The initial conditions a re  wri t ten in the same form as in (1.2). 
Applying L a p l a c e - F o u r i e r  (LF) t r ans fo rmat ions  to Eqs. (1.1), we a r r i ve  at the usual s econd-o rde r  differen- 
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d2~ 2 --9' - 

dx 2 

w h e r e  p = ~ + i T is  the p a r a m e t e r  of the  Lap lace  t r a n s f o r m a t i o n  wi th  r e s p e c t  to the t i m e  t and w is  the 
parameter of the Fourier transformation with respect to the coordinate y. The general solution of Eqs. (1.6) 

is of the form 

~ =  Ae-X|  o'+~ v + Ae 

x l / f  ~''~.. +c 2 ~p2 = B e - ~ } / ~ : + c T  %-" + Be 

A s s u m i n g  that  ~ and ~ --* 0 as  x - -  0, we ob ta in  A = B  = 0. 

Let us apply the LF transformation to the boundary conditions (1.4) and (1.5) of the problem. Condition 

(1.4) is written in the form 

--  A | /-~" + cT"p 2 + i~oB = uo, (1.7) 

and  the condi t ion  (1.5) i s  w r i t t e n  as  

�9 _ 2 2  ((02 i 2) imA | /  o) ~ + cl p + + T cT B = O. 
\ 

Solving (1.7) and (1.8) s i m u l t a n e o u s l y ,  we f ind 

2o~ ~ + c~-2P 2 

a = - ~,, ~ - ~ p  (o). " ~ _ / _ p . . ) , ~ ,  

- 2 i o )  

B ~ ~) c~_2p2 . 

Hence the  so lu t ion  b e i n g  sought i s  w r i t t e n  in  the  f o r m  

_ 2 ~ + ~ U  p~ - ~ I / ~ ' + ; U p  ' 
�9 : o  e ~ 

/ --') , 

2i0) -- x o,-_e2 -pz 
= u0 ~y2p----7 e 

Conve r t i ng  to the  d i s p l a c e m e n t s  u, v, and  w, we obta in  t h e i r  s p e c t r a  

= -lL o \('2~ zc~-2pu e-- uVa)~'~-2~P~ c22p e -xl/~(~247 ) ; 

F : ,l 0 ~(-- ~0) 203-"-'-c-~2p ~ --x~/6)~+ci2p" 2io3 (o3 ~ 2;_ c22p2)1/2 8 -x~// ~ ) ; 
, c~2p2 ((02 + CV2p2 ) 1/2 e + c~2p 2 , 

( z . s )  

(1.9)  

- = u {' ~d  c T ~ . ~  2co~ + ~ T  2 p2 " - 2 - 'i 

The d i s p l a c e m e n t s  w a r e  e x p r e s s e d  in t e r m s  of u and  v wi th  the hypo thes i s  of a t w o - d i m e n s i o n a l  s t r e s s  
s ta te  t aken  into account  by  the r e l a t i o n s h i p  

w = - -  [9d/2(1 - -  ~t)](Ou/Ox + Ov/@), 

where  d i s  the  p l a t e ' s  t h i cknes s .  It i s  e a sy  to see  f r o m  the  r e l a t i o n s h i p s  (1.9) that  i t  i s  p o s s i b l e  by m e a s u r -  
ing the spectra of the displacements u, v, or w to determine the function ~0, and applying the inverse LF 
transformation, establish the physical process of the fracture's formation. In addition, the function u0 is a 
modulating function with respect to the expressions contained within parentheses in (1.9). Consequently, its 
zeroes (or extrema) will also be zeroes (extrema) of the functions u, v, and ~. 

Thus, the problem reduces to a search for the function u0, i.e., to the construction of a model of a 
fracture as an emitter of elastic vibrations. However, simulationof a fracture on the basis of experimental 

data is not possible for a number of reasons (for example, its high velocity and the small amount of the frac- 
ture's opening). Therefore, the investigation of the behavior of a fracture as the source of elastic vibrations 
was carried out with the aid of a computer. Problem (1.1)-(1.3) was reduced to a finite-difference scheme, 
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p r o g r a m m e d  in the Algo l ' 60  language, and solved on a Minsk-22M elect ronic  computer .  Centra l -d i f ference  
equations of the f i r s t  approximation were  used to r ep resen t  der ivat ives .  Integration was pe r fo rmed  acco rd -  
ing to an explicit  t h r e e - l a y e r  scheme.  Special attention was paid to the choice of p a r a m e t e r s  which provide 
for  the method ' s  s tabil i ty and the computational  p r o c e s s '  convergence  [3]. 

w The following p rob lem in the a r r angemen t  (1.1)-(1.3) has been solved by the numerica l  method: the 
format ion of an internal  f r ac tu re  of constant  length L in a rec tangular  plate of finite dimensions whose edges 
a re  r igidly res t ra ined.  The following p a r a m e t e r s  were  varied:  constants of the mater ia l ,  the plate '  [] dimen- 
sions,  the load on the f r a c t u r e ' s  edges, and its length. The solution made it poss ib le  to study the development 
of the wave p r o c e s s  caused by the formation of the defect. The tempora l  and spatial forms of the f r a c t u r e ' s  
opening were  given considerat ion in the analysis  of the numerica l  solution as the direct  source  of the dis-  
turbances.  Taking account of the p l a t e ' s  finite dimensions,  numerica l  data were  analyzed in the t ime interval  
f rom the instant of disruption of the s t rong forces  among the mate r ia l '  s pa r t i c l e s  (in the m i r r o r  problem - 
f rom the instant of application of the load q) to the t ime corresponding to the a r r iva l  of the wave ref lected 
f rom the p l a t e ' s  boundary.  As a resul t  it p roved  poss ib le  to r epresen t  the quantity u 0 - the kinematical  
source  function - to a high degree  of accuracy  by a function of the form 

= Ist when 0 < t'< T (y) (2.1) 

U~ [sT(y) when t ~ T ( y ) ,  

where  T(y)  = (2 /c l )  (l z - y 2 ) l / z ,  s = q/pcl ,  and p is the m a t e r i a l ' s  density. 

The t ime dependence of the shape of the motion of point O of the f r a c t u r e ' s  surface  is shown in Fig. 1 
as curve 1: curve  2 depicts the function u 0 at y = 0. The calculation was ca r r i ed  out for the following values 
of the initial p a r a m e t e r s :  q = 500 k g / c m  2, L = 0.4 cm, c 1 = 4.9.105 c m / s e c ,  and p= 0 .78.10 -5 kg secZ/cm 4. 
The geometr ica l  shape of the f r a c t u r e ' s  opening (curve 1) is shown in Fig. 2 at the instants t -=2 and T = 
tc 1 / a ,  where  a = 1.4 cm is the distance f rom the f r a c t u r e ' s  axis to the p la te ' s  edge; curve 2 depicts the size 
of the f r a c t u r e ' s  static opening determined by W e s t e r g a a r d ' s  equation [4]. It is evident f rom the data cited 
that the p rob lem of the format ion of a f rac tu re  can be considered as t ransi t ional  f rom an initial no-defect  
state to a state of s tat ic  equi l ibr ium defined by Wes te rgaa rd '  [] equation. The t ime of the f rac ture '  s opening 
T (the interval  of the s o u r c e ' s  activity) is de termined by its length and does not depend on the size of the 
s t r e s s e s  q, which determine the rate  s of the fracturevs opening (or  the s teepness of the leading edge of the 
s o u r c e ' s  mechanica l  pulse) .  The resul t s  of the analysis  conducted a re  expressed  by the relat ions (2.1). Ap- 
plying the L F  t r ans fo rmat ion  to (2.1), we obtain 

+l 

--u0 = ~q S /-~l (1 --  e-vTW)) e~(~,J dy: (2.2) 
Pcl --l 

We will adopt y = 0 in the express ion  for  T ( y ) ,  i .e. ,  we will set T(y)  = L / c  1 (the la t ter  is equivalent to the 
rep lacement  of an ell iptical shape for the f r a c t u r e ' s  opening by a rec tangular  one) to fur ther  simplify the 
analysis .  Then it follows f rom (2.2) that 

- -  : ~ q  ( 2 . 3 )  Uo ~pc~p~ R (p) Q(~), 

where  R(p)  = 1 - e -pL/c~ is a factor  produced  by the tempora l  form of the f r a c t u r e ' s  opening and Q(~o) = 

icol -ic0l e - e is a fac tor  produced  by the f r ac tu re '  s geomet ry  and its l inear  extent. Taking account of what 
has been stated above, one can see that the ze roes  of  the modulus of the invest igated s ignal ' s  spectra l  density, 
which a r e  de termined by the fac tor  R (p), a re  a r ranged  over  the frequency interval  

h f  = c , /L .  (2.4) 

Here f = T/2~. [Since the integral  (2.2) is convergent  when ~ > 0, ~ -~ 0 is a ssumed  in the derivation of (2.4) 
f rom the relat ion (2.3).] Hence, it follows that one can determine the defect '  s length by measur ing  the spec-  
t rum of the acoust ical  emiss ion signals caused by f rac tu re  formation. 

u, c m  r . . . . . .  ~ :  " "  i 

_ct ) , _ 0 ~-- 
0 t ~ ~,t 0 0,1 ~ y, cm 

Fig. 1 Fig. 2 
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Fig. 3 Fig. 4 

One can determine the f rac tu re '  s length by measur ing  the spatial spec t rum of the mechanical  vibrat ions 
caused by the fac tor  Q(co) and obtain a relat ion analogous to (2.4). However, taking account of the fact that  co 
in the adopted sys tem of notation is the expansion p a r a m e t e r  with respec t  to the coordinate y, we a r r i ve  at 
the necess i ty  of applying severa l  t r ansduce r s  included in para l le l  to es tabl ish the spatial spec t rum instead of 
the single one used for determining the t ime spectrum. Analysis  of the express ion Q (co) allows one to con- 
elude that the direct ional  nature of the emiss ion f rom the f r ac tu re  is analogous to the direct ionali ty of e lec-  
t romagnet ic  radiat ion f rom a shor t -wavelength v ibra tor ,  which is ve ry  important  in the selection of the mos t  
rat ional  mounting posi t ion for  the record ing  t ransducers .  

Considering the frequency interval  between f = 0 and the f i rs t  zero of the spectrum,  one can say that 
its width is equal to A f. Taking the approximate  relat ion AfT ~ 1 into account, we obtain f rom (2.4) a re la -  
tion between a cer ta in  tempora l  cha rac te r i s t i c  of the propagat ing signal and the f r a c t u r e ' s  length 

L = c l T .  (2.5) 

The co r r ec tne s s  of the las t  relation is conf i rmed upon analysis  of the resul ts  of the numerica l  solution. 

It is in teres t ing to note the following. The problem of the dynamical  stabili ty of f r ac tu res  which exist 
in a br i t t le  ma te r i a l  has been discussed in [5] in the case  of the action of pulse loads on this mater ia l ,  and it 
has been shown that the f rac tu re  whose length L, pulse duration, and speed of sound in the mate r ia l  c a re  
re la ted  by the equation 

L = c T  

turns  out to be unstable upon the propagation of a square  s t r e s s  pulse  of duration T. The notion of the f r ac -  
ture  as a gorge  of some effective thickness was used by the authors  in solving the indicated problem. Gen- 
eral  assumptions  were  advanced in the pape r  [6] as to the tempora l  form of the displacements  caused by the 
fracture .  On the bas is  of an assumption as to the tempora l  form of the radiation from the f racture ,  the 
authors  of [6] came to corresponding conelusions as to the nature of the spec t rum of the emit ted signals. The 
aspect  of a f rac ture  as a re f lec tor  was also pointed out in the paper  [7] : a f rac tu re  of length L completely 
ref lects  a vibration having frequency f _> c 1 / L .  

The numer ica l  solution of the p rob lem of the f rac tur ing  of a continuity of constant length has permi t ted  
obtaining a t rans ient  moving f racture .  The investigation of the dynamical  s t r e s s e s  and distort ion energy U 
at the f r a c t u r e ' s  apex has shown that these quantities a re  propor t ional  to the known constants  of f rac tu re  
mechanics  - t h e  s t r e s s - in tens i ty  coefficient k 1 and the specific surface energy y. 

Taking account  of the concentrat ion of s t r e s s e s  (r x and the energy U at the f r a c t u r e ' s  apex, and also 
thei r  propor t ional i ty  to k 1 and y,  the solution of the t ransient  problem has been ca r r i ed  out in the following 
way. Upon the fulfillment of any of the conditions: ax  - ~ and U >_ ~* (a*  and U* are  specified cr i t ical  
values),  an inc rease  has o c c u r r e d  in the f r a c t u r e ' s  length in each direction by the amount of a gr id  step. The 
average  veloci ty was calculated f rom the instant of the preceding jump and was r e f e r r e d  to the middle of the 
t ime interval.  Investigations have shown that the d i sc re te  model of f rac tu re  shown in Fig. 3 evidently gives 
the mos t  c o r r e c t  idea of the f r a c t u r e ' s  growth, which is in agreement  with known analytic est imates.  In this 
model  points of the f ini te-difference gr id  represen t  mate r ia l  pa r t i c les  among which interact ive forces  occur  
for  binding. The s t r e s se s  at the f r a c t u r e ' s  apex w e r e  calculated from well-known equations [2] by means  of 
the approximation of der ivat ives  with respec t  to the displacements  at the points 1, 2, and 3 (see Fig. 3). When 
the values of a~ and U* are  near  and c lose  to q and Ust - the distort ion energy corresponding to a static 
opening of the f r ac tu re  - the l imiting veloci t ies  amount to V = 0.71 c 2 and V = 0.68 c2, respect ively.  

The opening of the moving f rac tu re  was invest igated in the p roce s s  of solving the t rans ient  problem. 
The shape of a f r a c t u r e ' s  sur face  whose development was  de termined by the energy c r i te r ion  (U _> U*) is 
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shown in Fig. 4. Curves  1 a r e  the d i sp l acemen t s  u of  the f r ac tu re ,  s su r face ,  and cu rves  2 a r e  the shape of a 
s ta t ic  f r a c t u r e  of  co r r e spond ing  length, It i s  obvious he re  that  the f r a c t u r e ' s  su r face  has a shape c lose  to 
e l l ip t ical ,  and the opening at each  ins tant  of t i m e  c o r r e s p o n d s  to the ins tantaneous value of i ts  length. The 
ra t io  of the s e m i m i n o r  axes  of the st.atic and dynamica l  f r a c t u r e s  amounts  to 1.2-1.4 for  ve loc i t ies  c lose  to 
the l imi t ing  value.  

Hence,  one can w r i t e  the  k inemat ica l  function of a moving  f r a c t u r e  approx ima te ly  in the fo rm 

]2~( /2( t ) - -  y-) , - ,  O <  t <  T 

i c? (2.6) 
Uo -~(t" U"W -~, ,Wi (T)-- ~ > r, 

where  T is  the t i m e  of the jump.  Applying the LF t r a n s f o r m a t i o n  to (2.6), we  get 

- -  ~q~v.l'rr - v r , r  {o~vt T I (~ e -p~'~ 

where  V i s  the j u m p ' s  ve loc i ty  (constant) and I t  is  the cyl indr ica l  function of the f i r s t  kind. Hence, as w--* 0 
( fo r  spat ia l  h a r m o n i c s  c lose  to ze ro th  order)  and ~ -~ 0, we find a dependence analogous to (2.4) between the 
t ime  of the f r a c t u r e ' s  jump and the dis t r ibut ion of the t i m e  s p e c t r u m ' s  ex t r ema ,  

A/ = l iT .  (2.7) 

The  mode l  f o r m u l a t e d  for  a f r a c t u r e  as  an e m i t t e r  (2.1) has  been  r ea l i z ed  in a n u m e r i c a l  solution. Com-  
p a r i s o n  of the exact  solution and the solution b a s e d  on the  adopted model  is  given in Fig. 5. Here  cu rves  1 
a r e  the d i sp l acemen t s  of the points  A (0.5 a; 0) and B (0.5 a; 0.3 a) of the .p la te  obtained by solving the 
p r o b l e m  with spec i f ied  loads on the f r a c t u r e  su r f ace ,  and cu rves  2 a r e  the d i sp lacemen t s  at  those  s ame  points  
fo r  a spec i f ied  law of the f r a c t u r e ' s  opening. 

A p r o c e d u r e  has  been  ci ted in the p a p e r  [8] for  m e a s u r i n g  the spec t rum of the acous t ica l  emis s ion  s ig-  
nals  for  individual j umps  of the f r ac tu re .  The  r e su l t s  of  an expe r imen t  showed that  the location of the f i r s t  
m in imum re l a t i ve  to the f requency  depends on the duration of the jump in the rec tangu la r ly  developing f r a c -  
tu re ,  which is  con f i rmed  by  the r e s u l t s  of th is  p a p e r  [Eq (2.7)]. 

The author  thanks L. I. Slepyan for  valuable  d iscuss ion  and at tent ion to this r e s e a r c h .  
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