MODEL OF A FRACTURE AS AN EMITTER OF
ELASTIC VIBRATIONS
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During the past two decades a new method has begun to be intensively developed for the inves-
tigation of fracture processes which is based on recording the mechanical vibrations generated
by the defects of a medium [1]. The new method's problems include: extraction of a useful sig-
nal from the extraneous noises, identification of the type of defect, detexmination of its charac-
teristic dimensions, and an estimate of the danger of the situation which has developed. The
solution of the problems indicated has great meaning in such practical applications as nonde-
structive quality control and the engineering diagnostics of materials and manufactured goods.
Therefore, the investigation of the spectrum of the signals produced by the formation of macro-
scopic fractures, such as the terminal and, consequently, most dangerous phase of fracture, is
of great interest. The kinematical characteristics of a fracture as an emitter of elastic vibra-
tions are formulated in this paper. The spatial and time spectra of the dynamical motions
caused by the appearance of a growing fracture in a thin plate are discussed. Relationships

are derived between the spectral characteristics of propagating disturbances and the parame-
ters of the fracture.

§1. Let us assume that a two-dimensional stress state is realized, the material is isotropic, it is
elastic right up to fracture, and the break is normal. The wave equations
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with the initial and boundary conditions .
u=v=duldt =dv/dt =0, t =0 (1.2)

u=0wheniy >1, z=0; (1.3)
0, = g whenly (I, z =0, (1.4)

occur in the medium, where u and v are the displacements along x and y, 21 is the fracture length, t is
the time, ¢ and ¢ are the longitudinal and transverse potentials, and ¢; and ¢, are their propagation rates
(the potentials ¢ and ¢, the stresses, and the displacements are related by well-known functions [2]). The
quantity q in the conditions (1.3) is the load (constant) acting on the fracture's edges in the direction of the
% axis. In this case the principle of superposition of the stress—strain state is applied, which is justified by
the linear statement of the problem. Thus, the problem of the propagation of "unloading' waves is replaced
by the problem of the propagation of "'loading' waves (the mirror-symmetric problem). However, the physi-
cal interpretation of the results obtained in the cited approach [the problem (1.1)-(1.3)] is rather complex.
Another method of describing a developing defect is possible — the specification of its kinematical character-
istics. One can write the boundary conditions (1.3) in such a case in the form

u=0 whenly > 1, z = 0; (14)
u = ugwhen |y < I, z = 0;
Toy = 0 wheny| < o0, 7 = 0, (1.5)

where u, is the kinematical source function. The initial conditions are written in the same form as in (1.2).
Applying Laplace~ Fourier (LF) transformations to Egs. (1.1), we arrive at the usual second-order differen-
tial equations
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where p = ¢ *+ iy is the parameter of the Laplace transformation with respect to the time t and w is the
parameter of the Fourier transformation with respect to the coordinate y. The general solution of Egs. {1.6)
is of the form
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Assuming that 3 and  —~ 0 as x — 0, we obtain A=B = 0.
Let us apply the LF transformation to the boundary conditions (1.4) and (1.5} of the problem. Condition
(1.4) is written in the form
— AV O o 4 0B =T, (1.7)

and the condition (1.5) is written as
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Solving (1.7) and (1.8) simultaneously, we find
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Hence the solution being sought is written in the form
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Converting to the displacements u, v, and w, we obtain their spectra
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The displacements w are expressed in terms of u and v with the hypothesis of a two-dimensional stress
state taken intc account by the relationship

— [pd2(1 — p)Xou/ox -+ aviay),

where d is the plate!s thickness. If is easy to see from the relationships (1.9) that it is possible by measur-
ing the spectra of the displacements u, v, or w to determine the function u,;, and applying the inverse LF
transformation, establish the physical process of the fracture's formation. In addition, the function T, is a
modulating function with respect to the expressions contained within parentheses in (1.9). Consequently, its
zeroes (or extrema) will also be zeroes (extrema) of the functions u, v, and w.

Thus, the problem reduces to a search for the function u;, i.e., to the construction of a model of a
fracture as an emitter of elastic vibrations. However, simulationof a fracture on the basis of experimental
data is not possible for a number of reasons (for example, its high velocity and the small amount of the frac-
ture's opening). Therefore, the investigation of the behavior of a fracture as the source of elastic vibrations
was carried out with the aid of a computer. Problem (1.1)-(1.3) was reduced to a finite-difference scheme,
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programmed in the Algol-60 language, and solved on a Minsk-22M electronic computer, Central-difference
equations of the first approximation were used to represent derivatives, Integration was performed accord-
ing to an explicit three-layer scheme, Special attention was paid to the choice of parameters which provide
for the method's stability and the computational process' convergence [3].

§2. The following problem in the arrangement (1.1)-(1.3) has been solved by the numerical method: the
formation of an internal fracture of constant length L in a rectangular plate of finite dimensions whose edges
are rigidly restrained. The following parameters were varied: constants of the material, the plate's dimen-
sions, the load on the fracture's edges, and its length. The solution made it possible to study the development
of the wave process caused by the formation of the defect. The temporal and spatial forms of the fracture's
opening were given consideration in the analysis of the numerical solution as the direct source of the dis-
turbances. Taking account of the plate's finite dimensions, numerical data were analyzed in the time interval
from the instant of disruption of the strong forces among the material's particles (in the mirror problem —
from the instant of application of the load q) to the time corresponding to the arrival of the wave reflected
from the plate's boundary. As a result it proved possible to represent the quantity u, — the kinematical
source function — to a high degree of accuracy by a function of the form

_ [stwhen 0CE< T (1) ' 2.1)
sT (y) when t =T (y),

where T(y) = (2/¢;) (12 — y?)12, s = d/pecy, and p is the material's density.
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The time dependence of the shape of the motion of point O of the fracture's surface is shown in Fig. 1
as curve 1: curve 2 depicts the function u; at y = 0. The calculation was carried out for the following values
of the initial parameters: q = 500 kg/cm?, L =0.4 cm, ¢; = 4.9-10% cm/sec, and p= 0.78-107% kg sec?/cm?.
The geometrical shape of the fracture's opening (curve 1) is shown in Fig. 2 at the instants t=2 and t=
tey /a_, where a = 1.4 cm is the distance from the fracture's axis to the plate's edge; curve 2 depicts the size
of the fracture's static opening determined by Westergaard's equation [4]. It is evident from the data cited
that the problem of the formation of a fracture can be considered as transitional from an initial no-defect
state to a state of static equilibrium defined by Westergaard's equation. The time of the fracture's opening
T (the interval of the source's activity) is determined by its length and does not depend on the size of the
stresses g, which determine the rate s of the fracture's opening (or the steepness of the leading edge of the
source's mechanical pulse). The results of the analysis conducted are expressed by the relations (2.1). Ap-
plying the LF transformation to (2.1}, we obtain

+1
U = i L;}T(l — =BT W) e@ dy. (2.2)
We will adopt y = 0 in the expression for T(y), i.e., we will set T(y) = L/c; (the latter is equivalent to the
replacement of an elliptical shape for the fracture's opening by a rectangular one) to further simplify the

analysis. Then it follows from (2.2} that
q

o = s R(p) Q@) (2.3)

where R(p) =1 — e—pL/q is a factor produced by the temporal form of the fracture's opening and Q(w) =
elwl - e-lwl is a factor produced by the fracture's geometry and its linear extent. Taking account of what
has been stated above, one can see that the zeroes of the modulus of the investigated signal's spectral density,

which are determined by the factor R(p), are arranged over the frequency interval
Af = ¢ /L, (2.4)
Here f= -/2r. [Since the integral (2.2) is convergent when o > 0, o — 0 is assumed in the derivation of (2.4)

from the relation (2.3).] Hence, it follows that one can determine the defect's length by measuring the spec-
trum of the acoustical emission signals caused by fracture formation.
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One can determine the fracture's length by measuring the spatial spectrum of the mechanical vibrations
caused by the factor Q(w) and obtain a relation analogous to (2.4). However, taking account of the fact that o
in the adopted system of notation is the expansion parameter with respect to the coordinate y, we arrive at
the necessity of applying several transducers included in parallel to establish the spatial spectrum instead of
the single one used for determining the time spectrum. Analysis of the expression Q(w) allows one to con-
clude that the directional nature of the emission from the fracture is analogous to the directionality of elec-
tromagnetic radiation from a short-wavelength vibrator, which is very important in the selection of the most
rational mounting position for the recording transducers.

Considering the frequency interval between f= 0 and the first zero of the spectrum, one can say that
its width is equal to A f. Taking the approximate relation AfT =1 into account, we obtain from (2.4) a rela-
tion between a certain temporal characteristic of the propagating signal and the fracture's length

L=g¢Tf. {2.5)
The correctness of the last relation is confirmed upon analysis of the results of the numerical solution.

It is interesting to note the following. The problem of the dynamical stability of fractures which exist
in a brittle material has been discussed in [5] in the case of the action of pulse loads on this material, and it
has been shown that the fracture whose length L, pulse duration, and speed of sound in the material ¢ are
related by the equation

L= T

turns out to be unstable upon the propagation of a square stress pulse of duration T. The notion of the frac-
ture as a gorge of some effective thickness was used by the authors in solving the indicated problem. Gen-
eral assumptions were advanced in the paper [6] as to the temporal form of the displacements caused by the
fracture. On the basis of an assumption as to the temporal form of the radiation from the fracture, the
authors of [6] came to corresponding conclusions as to the nature of the spectrum of the emitted signals. The
aspect of a fracture as a reflector was also pointed out in the paper [7]: a fracture of length I, completely
reflects a vibration having frequency f = ¢;/L.

The numerical solution of the problem of the fracturing of a continuity of constant length has permitted
obtaining a transient moving fracture. The investigation of the dynamical stresses and distortion energy U
at the fracture's apex has shown that these quantities are proportional to the known constants of fracture
mechanics — the stress-intensity coefficient k; and the specific surface energy v.

Taking account of the concentration of stresses oy and the energy U at the fracture's apex, and also
their proportionality to k; and y, the solution of the transient problem has been carried out in the following
way. Upon the fulfillment of any of the conditions: gx = o; and Uz g™ (a;; and U* are specified critical
values), an increase has occurred in the fracture's length in each direction by the amount of a grid step. The
average velocity was calculated from the instant of the preceding jump and was referred to the middle of the
time interval. Investigations have shown that the discrete model of fracture shown in Fig. 3 evidently gives
the most correct idea of the fracture's growth, which is in agreement with known analytic estimates. In this
model points of the finite-difference grid represent material particles among which interactive forces occur
for binding. The stresses at the fracture's apex were calculated from well-known equations [2] by means of
the approximation of derivatives with respect to the displacements at the points 1, 2, and 3 (see Fig. 3). When
the values of ox and U* are near and close to § and Ugt — the distortion energy corresponding to a static
opening of the fracture — the limiting velocities amount to Vv = 0.71 ¢ and V= 0.68 ¢c,, respectively.

The opening of the moving fracture was investigated in the process of solving the transient problem.
The shape of a fracture's surface whose development was determined by the energy criterion (U = U*) is
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shown in Fig. 4. Curves 1 are the displacements u of the fracture's surface, and curves 2 are the shape of a
static fracture of corresponding length., It is obvious here that the fracture's surface has a shape close to
elliptical, and the opening at each instant of time corresponds to the instantaneous value of its length. The
ratio of the semiminor axes of the static and dynamical fractures amounts to 1.2-1.4 for velocities close to
the limiting value.

Hence, one can write the kinematical function of a moving fracture approximately in the form

(228 (12 () — y)12, 0t << T
. (2.6)
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where T is the time of the jump. Applying the LF transformation to (2.6), we get
uo 2pq:ﬂ (ye_prﬂ (th)dt+—— Il(mVT) —pT>’

where V is the jump's velocity (constant) and I; is the cylindrical function of the first kind. Hence, as w — 0
(for spatial harmonics close to zeroth order) and « — 0, we find a dependence analogous to (2.4) between the
time of the fracture's jump and the distribution of the time spectrum's extrema,

Af = 1T, (2.7)

The model formulated for a fracture as an emitter (2.1} has been realized in a numerical solution. Com-
parison of the exact solution and the solution based on the adopted model is given in Fig. 5. Here curves 1
are the displacements of the points A (0.5 a; 0) and B (0.5 @; 0.3 a) of the plate obtained by solving the
problem with spetified loads on the fracture surface, and curves 2 are the displacements at those same points
for a specified law of the fracture's opening.

A procedure has been cited in the paper [8] for measuring the spectrum of the acoustical emission sig-
nals for individual jumps of the fracture. The results of an experiment showed that the location of the first
minimum relative to the frequency depends on the duration of the jump in the rectangularly developing frac-
ture, which is confirmed by the results of this paper [Eq (2.7)].

The author thanks L. I Slepyan for valuable discussion and attention to this research.
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